Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(4): e11268, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646006

RESUMEN

The cryptic invasion of golden apple snails (Pomacea canaliculata and P. maculata) in Taiwan has caused significant ecological and economical damage over the last few decades, however, their management remains difficult due to inadequate taxonomic identification, complex phylogeny, and limited population genetic information. We aim to understand the current distribution, putative population of origin, genetic diversity, and potential path of cryptic invasion of Pomacea canaliculata and P. maculata across Taiwan to aid in improved mitigation approaches. The present investigation conducted a nationwide survey with 254 samples collected from 41 locations in 14 counties or cities across Taiwan. We identified P. canaliculata and P. maculata based on mitochondrial COI and compared their genetic diversity across Taiwan, as well as other introduced and native countries (based on publicly available COI data) to understand the possible paths of invasion to Taiwan. Based on mitochondrial COI barcoding, sympatric and heterogeneous distributions of invasive P. canaliculata and P. maculata were noted. Our haplotype analysis and mismatch distribution results suggested multiple introductions of P. canaliculata in Taiwan was likely originated directly from Argentina, whereas P. maculata was probably introduced from a single, or a few, introduction event(s) from Argentina and Brazil. Our population genetic data further demonstrated a higher haplotype and genetic diversity for P. canaliculata and P. maculata in Taiwan compared to other introduced regions. Based on our current understanding, the establishment of P. canaliculata and P. maculata is alarming and widespread beyond geopolitical borders, requiring a concerted and expedited national and international invasive species mitigation program.

2.
Aquat Toxicol ; 264: 106713, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37866164

RESUMEN

With the growing age of human civilization, industrialization has paced up equally which is followed by the innovation of newer concepts of science and technology. One such example is the invention of engineered nanoparticles and their flagrant use in widespread applications. While ENPs serve their intended purposes, they also disrupt the ecological balance by contaminating pristine aquatic ecosystems. This review encompasses a comprehensive discussion about the potent toxicity of ENPs on aquatic ecosystems, with a particular focus on their impact on aquatic higher plants. The discussion extends to elucidating the fate of ENPs upon release into aquatic environments, covering aspects ranging from morphological and physiological effects to molecular-level phytotoxicity. Furthermore, this level of toxicity has been correlated with the determination of competent plants for the phytoremediation process towards the mitigation of this ecological stress. However, this review further illustrates the path of future research which is yet to be explored. Determination of the genotoxicity level of aquatic higher plants could explain the entire process comprehensively. Moreover, to make it suitable to be used in natural ecosystems phytoremediation potential of co-existing plant species along with the presence of different ENPs need to be evaluated. This literature will undoubtedly offer readers a comprehensive understanding of the stress induced by the irresponsible release of engineered nanoparticles (ENP) into aquatic environments, along with insights into the resilience characteristics of these pristine ecosystems.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Humanos , Biodegradación Ambiental , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Plantas
3.
J Microbiol Methods ; 212: 106809, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37597775

RESUMEN

The emergence of multi-drug resistant (MDR) pathogens poses a significant global health concern due to the failure of conventional medical treatment. As a result, the development of several metallic (Ag, Au, Zn, Ti, etc.) nanoparticles, has gained prominence as an alternative to conventional antimicrobial therapies. Among these, green-synthesized silver nanoparticles (AgNPs) have gained significant attention due to their notable efficiency and broad spectrum of antimicrobial activity. Bacterial exopolysaccharides (EPS) have recently emerged as a promising biological substrate for the green synthesis of AgNPs. EPS possess polyanionic functional groups (hydroxyl, carboxylic, sulfate, and phosphate) that effectively reduce and stabilize AgNPs. EPS-mediated AgNPs exhibit a wide range of antimicrobial activity against various pathogenic microbes, including Gram-positive and Gram-negative bacteria, as well as fungi. The extraction and purification of bacterial EPS play a vital role in obtaining high-quality and -quantity EPS for industrial applications. This study focuses on the comprehensive methodology of EPS extraction and purification, encompassing screening, fermentation optimization, pretreatment, protein elimination, precipitation, and purification. The review specifically highlights the utilization of bacterial EPS-mediated AgNPs, covering EPS extraction, the synthesis mechanism of green EPS-mediated AgNPs, their characterization, and their potential applications as antimicrobial agents against pathogens. These EPS-mediated AgNPs offer numerous advantages, including biocompatibility, biodegradability, non-toxicity, and eco-friendliness, making them a promising alternative to traditional antimicrobials and opening new avenues in nanotechnology-based approaches to combat microbial infections.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Bacterias Gramnegativas , Plata/farmacología , Antibacterianos/farmacología , Bacterias Grampositivas , Antiinfecciosos/farmacología
4.
Environ Pollut ; 334: 122171, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37437759

RESUMEN

In light of the current COVID-19 pandemic caused by the virus SARS-CoV-2, there is an urgent need to identify and investigate the various pathways of transmission. In addition to contact and aerosol transmission of the virus, this review investigated the possibility of its transmission via microplastics found in sewage. Wastewater-based epidemiological studies on the virus have confirmed its presence and persistence in both influent sewage as well as treated ones. The hypothesis behind the study is that the huge amount of microplastics, especially Polyvinyl Chloride and Polyethylene particles released into the open waters from sewage can become a good substrate and vector for microbes, especially Polyvinyl Chloride and Polyethylene particles, imparting stability to microbes and aiding the "plastisphere" formation. A bibliometric analysis highlights the negligence of research toward plastispheres and their presence in sewage. The ubiquity of microplastics and their release along with the virus into the open waters increases the risk of viral plastispheres. These plastispheres may be ingested by aquatic organisms facilitating reverse zoonosis and the commercial organisms already reported with accumulating microplastics through the food chain poses a risk to human populations as well. Reliance of high population density areas on open waters served by untreated sewage in economically less developed countries might bring back viral transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Aguas del Alcantarillado , Microplásticos , Aguas Residuales , Plásticos , Pandemias , Cloruro de Polivinilo , Polietileno
5.
J Environ Manage ; 343: 118222, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37235991

RESUMEN

Biochar, a promising carbon-rich and carbon-negative material, can control water pollution, harness the synergy of sustainable development goals, and achieve circular economy. This study examined the performance feasibility of treating fluoride-contaminated surface and groundwater using raw and modified biochar synthesized from agricultural waste rice husk as problem-fixing renewable carbon-neutral material. Physicochemical characterizations of raw/modified biochars were investigated using FESEM-EDAX, FTIR, XRD, BET, CHSN, VSM, pHpzc, Zeta potential, and particle size analysis were analyzed to identify the surface morphology, functional groups, structural, and electrokinetic behavior. In fluoride (F-) cycling, performance feasibility was tested at various governing factors, contact time (0-120 min), initial F- levels (10-50 mg L-1), biochar dose (0.1-0.5 g L-1), pH (2-9), salt strengths (0-50 mM), temperatures (301-328 K), and various co-occurring ions. Results revealed that activated magnetic biochar (AMB) possessed higher adsorption capacity than raw biochar (RB) and activated biochar (AB) at pH 7. The results indicated that maximum F- removal (98.13%) was achieved using AMB at pH 7 for 10 mg L-1. Electrostatic attraction, ion exchange, pore fillings, and surface complexation govern F- removal mechanisms. Pseudo-second-order and Freundlich were the best fit kinetic and isotherm for F- sorption, respectively. Increased biochar dose drives an increase in active sites due to F- level gradient and mass transfer between biochar-fluoride interactions, which reported maximum mass transfer for AMB than RB and AB. Fluoride adsorption using AMB could be described through chemisorption processes at room temperature (301 K), though endothermic sorption follows the physisorption process. Fluoride removal efficiency reduced, from 67.70% to 53.23%, with increased salt concentrations from 0 to 50 mM NaCl solutions, respectively, due to increased hydrodynamic diameter. Biochar was used to treat natural fluoride-contaminated surface and groundwater in real-world problem-solving measures, showed removal efficiency of 91.20% and 95.61%, respectively, for 10 mg L-1 F- contamination, and has been performed multiple times after systematic adsorption-desorption experiments. Lastly, techno-economic analysis was analyzed for biochar synthesis and F- treatment performance costs. Overall, our results revealed worth output and concluded with recommendations for future research on F- adsorption using biochar.


Asunto(s)
Agua Subterránea , Oryza , Contaminantes Químicos del Agua , Purificación del Agua , Fluoruros , Oryza/química , Purificación del Agua/métodos , Carbón Orgánico/química , Adsorción , Agua Subterránea/química , Cinética , Concentración de Iones de Hidrógeno
6.
J Mater Chem B ; 11(1): 10-32, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36484467

RESUMEN

The toxicity of metal nanoparticles has introduced promising research in the current scenario since an enormous number of people have been potentially facing this problem in the world. The extensive attention on green nanoparticle synthesis has been focussed on as a vital step in bio-nanotechnology to improve biocompatibility, biodegradability, eco-friendliness, and huge potential utilization in various environmental and clinical assessments. Inherent influence on the study of green nanoparticles plays a key role to synthesize the controlled and surface-influenced molecule by altering the physical, chemical, and biological assets with the provision of various precursors, templating/co-templating agents, and supporting solvents. However, in this article, the dominant characteristics of several kinds of lipopeptide biosurfactants are discussed to execute a critical study of factors affecting synthesis procedure and applications. The recent approaches of metal, metal oxide, and composite nanomaterial synthesis have been deliberated as well as the elucidation of the reaction mechanism. Furthermore, this approach shows remarkable boosts in the production of nanoparticles with the very less employed harsh and hazardous processes as compared to chemical or physical method-based nanoparticle synthesis. This study also shows that the advances in strain selection for green nanoparticle production could be a worthwhile and strong economical approach in futuristic medical science research.


Asunto(s)
Ciencia Ambiental , Nanopartículas del Metal , Humanos , Tecnología Química Verde/métodos , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Metales , Óxidos
7.
AoB Plants ; 14(4): plac031, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35990516

RESUMEN

Environmental DNA (eDNA) analysis has recently transformed and modernized biodiversity monitoring. The accurate detection, and to some extent quantification, of organisms (individuals/populations/communities) in environmental samples is galvanizing eDNA as a successful cost and time-efficient biomonitoring technique. Currently, eDNA's application to plants remains more limited in implementation and scope compared to animals and microorganisms. This review evaluates the development of eDNA-based methods for (vascular) plants, comparing its performance and power of detection with that of traditional methods, to critically evaluate and advise best-practices needed to innovate plant biomonitoring. Recent advancements, standardization and field applications of eDNA-based methods have provided enough scope to utilize it in conservation biology for numerous organisms. Despite our review demonstrating only 13% of all eDNA studies focus on plant taxa to date, eDNA has considerable environmental DNA has considerable potential for plants, where successful detection of invasive, endangered and rare species, and community-level interpretations have provided proof-of-concept. Monitoring methods using eDNA were found to be equal or more effective than traditional methods; however, species detection increased when both methods were coupled. Additionally, eDNA methods were found to be effective in studying species interactions, community dynamics and even effects of anthropogenic pressure. Currently, elimination of potential obstacles (e.g. lack of relevant DNA reference libraries for plants) and the development of user-friendly protocols would greatly contribute to comprehensive eDNA-based plant monitoring programs. This is particularly needed in the data-depauperate tropics and for some plant groups (e.g., Bryophytes and Pteridophytes). We further advocate to coupling traditional methods with eDNA approaches, as the former is often cheaper and methodologically more straightforward, while the latter offers non-destructive approaches with increased discrimination ability. Furthermore, to make a global platform for eDNA, governmental and academic-industrial collaborations are essential to make eDNA surveys a broadly adopted and implemented, rapid, cost-effective and non-invasive plant monitoring approach.

8.
Environ Res ; 214(Pt 4): 114043, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36029838

RESUMEN

Fluoride (F-) is one of the essential elements found in soil and water released from geogenic sources and several anthropogenic activities. Fluoride causes fluorosis, dental and skeletal growth problems, teeth mottling, and neurological damage due to prolonged consumption, affecting millions worldwide. Adsorption is an extensively implemented technique in water and wastewater treatment for fluoride, with significant potential due to efficiency, cost-effectiveness, ease of operation, and reusability. This review highlights the current state of knowledge for fluoride adsorption using biochar-based materials and the limitations of biochar for fluoride-contaminated groundwater and industrial wastewater treatment. Biochar materials have shown significant adsorption capacities for fluoride under the influence of low pH, biochar dose, initial concentration, temperature, and co-existing ions. Modified biochar possesses various functional groups (-OH, -CC, -C-O, -CONH, -C-OH, X-OH), in which enhanced hydroxyl (-OH) groups onto the surface plays a significant role in fluoride adsorption via electrostatic attraction and ion exchange. Regeneration and reusability of biochar sorbents need to be performed to a greater extent to improve removal efficiency and reusability in field conditions. Furthermore, the present investigation identifies the limitations of biochar materials in treating fluoride-contaminated drinking groundwater and industrial effluents. The fluoride removal using biochar-based materials at an industrial scale for understanding the practical feasibility is yet to be documented. This review work recommend the feasibility of biochar-based materials in column studies for fluoride remediation in the future.


Asunto(s)
Fluoruros , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Estudios de Factibilidad , Cinética , Agua , Contaminantes Químicos del Agua/análisis
9.
Chemosphere ; 307(Pt 2): 135732, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35872057

RESUMEN

Geogenic contamination of groundwater is frequently associated with gold mining activities and related to drinking water quality problems worldwide. In Tanzania, elevated levels of trace elements (TEs) have been reported in drinking water sources within the Lake Victoria Basin, posing a serious health risk to communities. The present study aims to assess the groundwater quality with a focus on the concentration levels of geogenic contaminants in groundwater around the Lake Victoria goldfields in Geita and Mara districts. The water samples were collected from community drinking water sources and were analysed for physiochemical parameters (pH, EC, Eh), major ions, and trace elements. The analysed major ions included Na+, K+, Ca2+, Mg2+, SO42-, HCO3- and Cl- whereas the trace elements were As, Al, Li, Ba, B, Ti, V, U, Zr, Sr, Si, Mn Mo, Fe, Ni, Zn, Cr, Pb, Cd, and V. The present study revealed that the concentration levels of the major ions were mostly within the World Health Organization (WHO) drinking water standards in the following order of their relative abundance; for cations, Ca2+∼Na+>Mg2+>K+ and for anions was HCO3- > SO42- > NO3-, Cl- > PO43-. Statistical and geochemical modelling software such as 'R Studio', IBM SPSS, geochemical workbench, visual MINTEQ were used to understand the groundwater chemistry and evaluate its suitability for drinking purpose. The concentration of As in groundwater sources varies between below detection limit (bdl) and 300 µg/L, with highest levels in streams followed by shallow wells and boreholes. In approximately 48% of the analysed samples, As concentration exceeded the WHO drinking water guideline and Tanzania Bureau of Standards (TBS) guideline for drinking water value of 10 µg/L. The concentration of the analyzed TEs and mean values of physicochemical parameters were below the guideline limits based on WHO and TBS standards. The Canadian Council of Ministries of the Environment Water Quality Index (CCME WQI) shows that the overall water quality is acceptable with minimum threats of deviation from natural conditions. We recommend further geochemical exploration and the periodic risk assessment of groundwater in mining areas where high levels of As were recorded.


Asunto(s)
Agua Potable , Agua Subterránea , Oligoelementos , Contaminantes Químicos del Agua , Cadmio/análisis , Canadá , Agua Potable/análisis , Monitoreo del Ambiente , Oro/análisis , Agua Subterránea/análisis , Lagos/análisis , Plomo/análisis , Tanzanía , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua
10.
Mar Pollut Bull ; 181: 113905, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35839665

RESUMEN

Heavy metals (HM) are the major proximate drivers of pollution in the mangrove ecosystem. Therefore, ecological risk (ER) due to HM distribution/concentration in core-sediment of Puzi mangrove region (Taiwan) was examined with tidal influence (TI) along with indigenous rhizospheric bacteria (IRB). The HM concentration was observed higher at active-tidal-sediment compared to partially-active-sediment. Geo-accumulation index (Igeo) and contamination factor (CF) indicated the tidal-sediment was highly contaminated with arsenic (As) and moderately contaminated with Lead (Pb) and Zinc (Zn). However, the pollution loading index (PLI) and degree of contamination (Cd) exhibited 'no pollution' and 'low-moderate degree of contamination', in the studied region respectively. The isolated IRB (Priestia megaterium, Bacillus safenis, Bacillus aerius, Bacillus subtilis, Bacillus velenzenesis, Bacillus lichenoformis, Kocuria palustris, Enterobacter hormaechei, Pseudomonus fulva, and Paenibacillus favisporus; accession number OM979069-OM979078) exhibited the arsenic resistant behavior with plant-growth-promoting characters (IAA, NH3, and P-solubilization), which can be used in mangrove reforestation and bioremediation of HM.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes Químicos del Agua , China , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
11.
J Hazard Mater ; 436: 129197, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739727

RESUMEN

Arsenic (As) is one of the most prolific natural contaminants in water resources, and hence, it has been recognized as an emerging global problem. Arsenic exposure through food exports and imports, such as As-contaminated rice and cereal-based baby food, is a potential risk worldwide. However, ensuring As-safe drinking water and food for the globe is still not stated explicitly as a right neither in the United Nations' Universal Declaration of Human Rights and the 2030 Sustainable Development Goals (SDGs) nor the global UNESCO priorities. Despite these omissions, addressing As contamination is crucial to ensure and achieve many of the declared human rights, SDGs, and global UNESCO priorities. An international platform for sharing knowledge, experience, and resources through an integrated global network of scientists, professionals, and early career researchers on multidisciplinary aspects of As research can act as an umbrella covering the activities of UN, UNESCO, and other UN organizations. This can deal with the mitigation of As contamination, thus contributing to global economic development and human health. This article provides a perspective on the global As problem for sustainable As mitigation on a global scale by 2030.


Asunto(s)
Arsénico , Salud Global , Derechos Humanos , Humanos , Naciones Unidas
12.
Chemosphere ; 289: 133243, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34896417

RESUMEN

Dual functional innovative approaches were developed to tackle the algal scum problem in water by utilizing the algal (Spirogyra sp.) biomass waste for organic dye-laden industrial wastewater treatment, a global problem, and challenge. Therefore, an algal biochar-based nanocomposite (nAgBC) was synthesized and employed as a low-cost adsorbent for Congo red (CR) removal. Surface morphology, physicochemical characteristics, elemental composition, phase, and stability of the nanocomposite was analyzed using BET, FESEM-EDX, FTIR, XRD, XPS, and TGA. The nanocomposite was found to be thermostable, mesoporous with large and heterogeneous surface area, containing nAg as doped material, where -OH, NH, CO, CC, SO, and CH are the surface binding active functional groups. Maximum adsorption efficiency of 95.92% (18 mg L-1 CR) was achieved (qe = 34.53 mg g-1) with 0.5 g L-1 of nanocomposite after 60 min, at room temperature (300 K) at pH 6. Isotherm and kinetic model suggested multilayer chemisorption, where adsorption thermodynamics indicated spontaneous reaction. Fluorescens spectral analysis of CR confirmed the formation of CR supramolecule, supporting enhanced adsorption. Furthermore, the result suggested a 5th cycle reusability and considerable efficacy towards real textile industrial effluents. Synergistic effects of the active surface functional groups of the biochar and nAg, along with the overall surface charge of the composite lead to chemisorption, electrostatic attraction, H-bonding, and surface complexation with CR molecules. Thus, synthesized nAgBC can be applicable to mitigate the wastewater for cleaner production and environment.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Biomasa , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Aguas Residuales , Contaminantes Químicos del Agua/análisis
13.
Sci Total Environ ; 810: 152153, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864037

RESUMEN

Groundwater contamination from geogenic sources poses challenges to many countries, especially in the developing world. In Tanzania, the elevated fluoride (F-) concentration and related chronic fluorosis associated with drinking F- rich water are common in the East African Rift Valley regions. In these regions, F- concentration is space dependence which poses much uncertainty when targeting safe source for drinking water. To account for the spatial effects, integrated exploratory spatial data analysis, regression analysis, and geographical information systems tools were used to associate the distribution of F- in groundwater with spatial variability in terrain slopes, volcanic deposits, recharge water/vadose materials contact time, groundwater resource development for irrigated agriculture in the Sanya alluvial plain (SAP) of northern Tanzania. The F- concentration increased with distance from steep slopes where the high scale of variation was recorded in the gentle sloping and flat grounds within the SAP. The areas covered with debris avalanche deposits in the gentle sloping and flat grounds correlated with the high spatial variability in F- concentration. Furthermore, the high spatial variability in F- correlated positively with depth to groundwater in the Sanya flood plain. In contrast, a negative correlation between F- and borehole depth was observed. The current irrigation practices in the Sanya alluvial plain contribute to the high spatial variability in F- concentration, particularly within the perched shallow aquifers in the volcanic river valleys. The findings of this study are important to the overall chain of safe water supply process in historically fluorotic regions. They provide new insights into the well-known F- contamination through the use of modern geospatial methods and technologies. In Tanzania's context, the findings can improve the current process of drilling permits issuance by the authority and guide the local borehole drillers to be precise in siting safe source for drinking water.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Fluoruros/análisis , Tanzanía , Contaminantes Químicos del Agua/análisis
14.
Biology (Basel) ; 10(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34943137

RESUMEN

Recently developed non-invasive environmental DNA-based (eDNA) techniques have enlightened modern conservation biology, propelling the monitoring/management of natural populations to a more effective and efficient approach, compared to traditional surveys. However, due to rapid-expansion of eDNA, confusion in terminology and collection/analytical pipelines can potentially jeopardize research progression, methodological standardization, and practitioner adoption in several ways. Present investigation reflects the developmental progress of eDNA (sensu stricto) including highlighting the successful case studies in conservation management. The eDNA technique is successfully relevant in several areas of conservation research (invasive/conserve species detection) with a high accuracy and authentication, which gradually upgrading modern conservation approaches. The eDNA technique related bioinformatics (e.g., taxon-specific-primers MiFish, MiBird, etc.), sample-dependent methodology, and advancement of sequencing technology (e.g., oxford-nanopore-sequencing) are helping in research progress. The investigation shows that the eDNA technique is applicable largely in (i) early detection of invasive species, (ii) species detection for conservation, (iii) community level biodiversity monitoring, (iv) ecosystem health monitoring, (v) study on trophic interactions, etc. Thus, the eDNA technique with a high accuracy and authentication can be applicable alone or coupled with traditional surveys in conservation biology. However, a comprehensive eDNA-based monitoring program (ecosystem modeling and function) is essential on a global scale for future management decisions.

15.
Sci Total Environ ; 780: 146274, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34030289

RESUMEN

This review presents a holistic overview of the occurrence, mobilization, and pathways of arsenic (As) from predominantly geogenic sources into different near-surface environmental compartments, together with the respective reported or potential impacts on human health in Latin America. The main sources and pathways of As pollution in this region include: (i) volcanism and geothermalism: (a) volcanic rocks, fluids (e.g., gases) and ash, including large-scale transport of the latter through different mechanisms, (b) geothermal fluids and their exploitation; (ii) natural lixiviation and accelerated mobilization from (mostly sulfidic) metal ore deposits by mining and related activities; (iii) coal deposits and their exploitation; (iv) hydrocarbon reservoirs and co-produced water during exploitation; (v) solute and sediment transport through rivers to the sea; (vi) atmospheric As (dust and aerosol); and (vii) As exposure through geophagy and involuntary ingestion. The two most important and well-recognized sources and mechanisms for As release into the Latin American population's environments are: (i) volcanism and geothermalism, and (ii) strongly accelerated As release from geogenic sources by mining and related activities. Several new analyses from As-endemic areas of Latin America emphasize that As-related mortality and morbidity continue to rise even after decadal efforts towards lowering As exposure. Several public health regulatory institutions have classified As and its compounds as carcinogenic chemicals, as As uptake can affect several organ systems, viz. dermal, gastrointestinal, peptic, neurological, respiratory, reproductive, following exposure. Accordingly, ingesting large amounts of As can damage the stomach, kidneys, liver, heart, and nervous system; and, in severe cases, may cause death. Moreover, breathing air with high As levels can cause lung damage, shortness of breath, chest pain, and cough. Further, As compounds, being corrosive, can also cause skin lesions or damage eyes, and long-term exposure to As can lead to cancer development in several organs.


Asunto(s)
Arsénico , Arsénico/análisis , Carbón Mineral , Monitoreo del Ambiente , Contaminación Ambiental , Humanos , América Latina , Minería
16.
RSC Adv ; 11(52): 32906-32916, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35493595

RESUMEN

Mesoporous materials (MMs) have recently been applied as advanced nanomaterials in different fields (separation, catalysis, adsorption etc.). Synthesis of MMs by chemical surfactants is not ecofriendly. This study focused on the biological synthesis of a MM by sol-gel method, using a Bacillus subtilis BBK006-mediated surfactant (template) and a precursor (TEOS). The biologically synthesized mesoporous silica nanoparticles (BMSN) were formed at calcination temperatures of 450-600 °C. The BMSN comprise Si and O elements with specific weights of 56.09% and 42.13% respectively, where the atomic% was detected to be 41.79% and 55.10%, respectively. The phase identity of the synthesized particles (61-300 nm uniform spherical shape; surface area: 8.2616 m2 g-1; pore diameter at 550 °C: 14.8516 nm) was confirmed with wide-angle XRD (10°-81°). A typical type IV isotherm was exhibited (BET curves) following IUPAC nomenclature and confirmed the mesoporous nature. The green-synthesized biosurfactant-mediated BMSN is an environmentally promising material to apply in biomedical science (e.g., antimicrobial activity, drug delivery, CMC, anticancer activity) and oil spill management.

17.
Appl Biochem Biotechnol ; 193(5): 1266-1283, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32445124

RESUMEN

The study targeted an assessment of microbial diversity during oil spill in the marine ecosystem (Kaohsiung port, Taiwan) and screened dominant indigenous bacteria for oil degradation, as well as UCM weathering. DO was detected lower and TDS/conductivity was observed higher in oil-spilled area, compared to the control, where a significant correlation (R2 = 1; P < 0.0001) was noticed between DO and TDS. The relative abundance (RA) of microbial taxa and diversities (> 90% similarity by NGS) were found higher in the boundary region of spilled-oily-water (site B) compared to the control (site C) and center of the oil spill area (site A) (BRA/diversity > CRA/diversity > ARA/diversity). The isolated indigenous bacteria, such as Staphylococcus saprophyticus (CYCTW1), Staphylococcus saprophyticus (CYCTW2), and Bacillus megaterium (CYCTW3) degraded the C10-C30 including UCM of oil, where Bacillus sp. are exhibited more efficient, which are applicable for environmental cleanup of the oil spill area. Thus, the marine microbial diversity changes due to oil spill and the marine microbial community play an important role to biodegrade the oil, besides restoring the catastrophic disorders through changing their diversity by ecological selection and adaptation process.


Asunto(s)
Hidrocarburos/metabolismo , Bacillus megaterium/metabolismo , Biodegradación Ambiental , Ecosistema , Staphylococcus saprophyticus/metabolismo
18.
J Hazard Mater ; 407: 124804, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33333390

RESUMEN

Arsenic (carcinogenic) is a global health concern due to its presence in groundwater and subsequent accumulation in cultivated-rice via irrigation. The present work focused on the evaluation of arsenic concentration in groundwater, different cultivated-rice varieties (studied together for the first-time) and related health-risks. Arsenic in groundwater (0.26-0.73 mg/L) exceeded the World Health Organization limit for drinking water (0.01 mg/L). Arsenic concentration in rice-grains was found in the range: < 0.0003-2.6 mg/kg dry-weights, where 42 rice varieties (out of total 44) exceeded the Codex Alimentarius Commission limit of polished-rice (0.2 mg/kg). The variety-specific differential-response of arsenic-accumulation was observed (first-time report), where high yielding rice varieties (HYV) were more prone to accumulate arsenic in comparison to local varieties (LV), however, 'Radhunipagol' (an aromatic LV) exhibited as a moderate arsenic-accumulator (BCF = 2.8). The cumulative estimated-daily-intakes (EDICumulative) of arsenic in central-tendency-exposure were observed to be 0.029, 0.031 and 0.04 mg/kg-day among children, teenagers and adults, respectively. The EDICumulative for possible reasonable-maximum-exposure among the above mentioned subpopulation was 0.038, 0.04 and 0.05 mg/kg-day, respectively. The evaluated Cumulative Hazard Index and Individual Excess Lifetime Cancer Risk values suggested that the studied population is under extremely severe cancerous and noncancerous risks to arsenic co-exposures via drinking water and rice.


Asunto(s)
Arsénico , Agua Potable , Agua Subterránea , Oryza , Contaminantes Químicos del Agua , Adolescente , Adulto , Arsénico/análisis , Arsénico/toxicidad , Niño , Contaminación de Alimentos/análisis , Humanos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
19.
J Hazard Mater ; 405: 123885, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33183836

RESUMEN

Arsenic (As) removal is a huge challenge, since several million people are potentially exposed (>10 µg/L World Health Organization guideline limit) through As contaminated drinking water worldwide. Review attempts to address the present situation of As removal, considering key topics on nano-technological and biological process and current progress and future perspectives of possible mitigation options have been evaluated. Different physical, chemical and biological methods are available to remove As from contaminated water/soil/wastes, where removal efficiency mainly depends on absorbent type, initial adsorbate concentration, speciation and interfering species. Oxidation is an important pretreatment step in As removal, which is generally achieved by several media such as O2/O3, HClO, KMnO4 and H2O2. The Fe-based-nanomaterials (α/ß/γ-FeOOH, Fe2O3/Fe3O4-γ-Fe2O3), Fe-based-composite-compounds, activated-Al2O3, HFO, Fe-Al2O3, Fe2O3-impregnated-graphene-aerogel, iron-doped-TiO2, aerogel-based- CeTiO2, and iron-oxide-coated-manganese are effective to remove As from contaminated water. Biological processes (phytoremediation/microbiological) are effective and ecofriendly for As removal from water and/or soil environment. Microorganisms remove As from water, sediments and soil by metabolism, detoxification, oxidation-reduction, bio-adsorption, bio-precipitation, and volatilization processes. Ecofriendly As mitigation options can be achieved by utilizing an alternative As-safe-aquifer, surface-water or rainwater-harvesting. Application of hybrid (biological with chemical and physical process) and Best-Available-Technologies (BAT) can be the most effective As removal strategy to remediate As contaminated environments.


Asunto(s)
Arsénico , Fenómenos Biológicos , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Arsénico/análisis , Humanos , Peróxido de Hidrógeno
20.
Sci Rep ; 10(1): 6742, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317706

RESUMEN

The industrial wastewater disposal has been growing attention for environmental protection and resource substitution, current decades. Similarly, the durability enhancement of concrete has increased attention by microbial induced CaCO3 precipitation (MICP) process (biocalcification). However, ecofriendly utilization of industrial wastewater in concrete formation is unstudied so far. The present study was carried out to evaluate the effect of industrial wastewater on the formation of cement mortar, compressive strength and water absorption. The biocement mortar strength (y) increased (y = 0.5295×2 + 1.6019×+251.05; R2 = 0.9825) with increasing percentage of organic wastewater (x) (BM0 - BM100) by MICP, where highest strength (280.75 kgf/cm2) was observed on BM100 (100% wastewater), compared to control (252.05 kgf/cm2). The water absorption (y) of biocement mortar decreases (y = -0.0251×2-0.103× + 15.965; R2 = 0.9594) with increment of wastewater (x) (%) (BM0 - BM100), where a minimum-water-absorption (14.42%) observed on BM100, compared to control (15.89%). SEM micrograph and XRD shows the formation of most-distinctive CaCO3 crystallization (aragonite/calcite) (acicular, brick shape, massive and stacked structure) inside biocement mortar (BM100), which fills the pores within cement mortar to form a denser structure, by microbial organic wastewater. Thus, present findings implied a cost-effective of MICP technology to improve the concrete properties along with the mitigation of industrial wastewater pollution, which goes some way towards solving the problem of industrial wastewater pollution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA